# **R** Coding Demonstration Week 7: Interactions and **Nonlinearities in the Transphobia Experiment** (Tidy)

Matthew Blackwell

Gov 51 (Harvard)

- Today we're going to cover some tools for exploring bivariate relationships.
- We'll use the data from the Broockman & Kalla (2016) transphobia study.
- Basic summary of experiment:
  - Randomly assigned door-to-door canvassers to two conditions
  - Conditions: perspective-taking script (treatment) or recycling script (placebo)
  - Follow up surveys at 3 days, 3 weeks, 6 weeks, and 3 months.

#### library(tidyverse)

phobia <- read.csv("data/transphobia\_all.csv")</pre>

| Variable Name  | Description                                                       |
|----------------|-------------------------------------------------------------------|
| age            | Age of the respondent in years                                    |
| female         | 1=respondent marked "Female" on voter registration, 0 otherwise   |
| voted_gen_14   | 1 if respondent voted in the 2014 general election                |
| voted_gen_12   | 1 if respondent voted in the 2012 general election                |
| treat_ind      | 1 if respondent was assigned to treatment, 0 for control          |
| racename       | character name of racial identity indicated on voter file         |
| democrat       | 1 if respondent is a registered Democrat                          |
| therm_trans_t0 | 0-100 feeling therm. about transgender people at baseline         |
| therm_trans_tX | 0-100 feeling therm. about transgender people in Wave X after     |
|                | treatment                                                         |
| therm_obama_t0 | 0-100 feeling therm. about Barack Obama at baseline               |
| therm_obama_tX | 0-100 feeling therm. about Barack Obama in Wave X after treatment |

Run a regression of thermometer scores for transgender people in wave 1 on the treatment indicator (treat\_ind), the indicator for if the respondent is a Democrat (democrat), and the interaction between the two variables.

Interpret each of the coefficients in terms of the effects of the intervention.

int\_dem\_fit <- lm(therm\_trans\_t1 ~ treat\_ind \* democrat, data = phobia)
int\_dem\_fit</pre>

| ##                                        |                                                                       |             |                 |                               |  |  |
|-------------------------------------------|-----------------------------------------------------------------------|-------------|-----------------|-------------------------------|--|--|
| ## Call:                                  | ## Call:                                                              |             |                 |                               |  |  |
| ## lm(form                                | ## lm(formula = therm_trans_t1 ~ treat_ind * democrat, data = phobia) |             |                 |                               |  |  |
| ##                                        |                                                                       |             |                 |                               |  |  |
| ## Coeffic:                               | ients:                                                                |             |                 |                               |  |  |
| ## (                                      | Intercept)                                                            | treat_ind   | democrat        | <pre>treat_ind:democrat</pre> |  |  |
| ##                                        | 52.48                                                                 | 5.69        | 3.45            | 1.75                          |  |  |
| ## effect (                               | of treatment for                                                      | Republicans |                 |                               |  |  |
| <pre>coef(int dem fit)["treat ind"]</pre> |                                                                       |             |                 |                               |  |  |
| <pre>coef(int_d</pre>                     | em_fit)["treat_i                                                      | nd"]        |                 |                               |  |  |
| coef(int_d                                | em_fit)["treat_i                                                      | nd"]        |                 |                               |  |  |
| <pre>coef(int_de<br/>## treat_in</pre>    |                                                                       | nd"]        |                 |                               |  |  |
|                                           | nd                                                                    | nd"]        |                 |                               |  |  |
| ## treat_in<br>## 5.0                     | nd<br>69                                                              |             |                 |                               |  |  |
| ## treat_in<br>## 5.0                     | nd<br>69<br>of treatment for                                          | Democrats   | fit)["treat in  | d:democrat"l                  |  |  |
| ## treat_in<br>## 5.0                     | nd<br>69<br>of treatment for                                          |             | fit)["treat_ind | d:democrat"]                  |  |  |

## treat\_ind ## 7.44 Run a regression of thermometer scores for transgender people in wave 1 on the treatment indicator (treat\_ind), the indicator for if the respondent is a woman (female), and the interaction between the two variables.

Interpret each of the coefficients in terms of the effects of the intervention. If you have time, compare the estimated effects here to the estimated difference in means of therm\_trans\_t1 between treated and control within levels of female.

int\_fem\_fit <- lm(therm\_trans\_t1 ~ treat\_ind \* female, data = phobia)
int\_fem\_fit</pre>

| ##<br>## Call:<br>## lm(formul<br>##  | a = therm_tr | ans_t1 ~ treat_ind                 | * female, data =   | phobia)     |
|---------------------------------------|--------------|------------------------------------|--------------------|-------------|
| ## Coefficie                          | nts:         |                                    |                    |             |
| ## (Inte                              | ercept)      | treat_ind                          | female treat       | _ind:female |
| ##                                    | 52.14        | 1.74                               | 3.20               | 8.71        |
| <pre>## effect of coef(int_fem_</pre> |              | or Republicans<br>_ind"]           |                    |             |
| ## treat_ind<br>## 1.74               |              |                                    |                    |             |
| <pre>## effect of coef(int_fem</pre>  |              | or Democrats<br>_ind"] + coef(int_ | _fem_fit)["treat_i | nd:female"] |
| ## treat_ind<br>## 10.4               |              |                                    |                    |             |

```
phobia %>%
group_by(female, treat_ind) %>%
summarize(across(therm_trans_t1, mean, na.rm = TRUE)) %>9
pivot_wider(names_from = treat_ind, values_from = therm_tran
mutate(diff_in_means = `1` - `0`)
```

```
## # A tibble: 2 x 4
## # Groups: female [2]
## female `0` `1` diff_in_means
## <int> <dbl> <dbl> <dbl>
## 1 0 52.1 53.9 1.74
## 2 1 55.3 65.8 10.4
```

Run a regression of thermometer scores for transgender people in wave 1 on the treatment indicator (treat\_ind), age (age), and the interaction between the two variables.

What is the estimated effect for a 25 year old? For a 50 year old?

## int\_age\_fit <- lm(therm\_trans\_t1 ~ treat\_ind \* age, data = phobia) int\_age\_fit</pre>

| ## |                             |                  |                 |                |
|----|-----------------------------|------------------|-----------------|----------------|
| ## | Call:                       |                  |                 |                |
| ## | <pre>lm(formula = the</pre> | erm_trans_t1 ~ t | reat_ind * age, | data = phobia) |
| ## |                             |                  |                 |                |
| ## | Coefficients:               |                  |                 |                |
| ## | (Intercept)                 | treat_ind        | age t           | reat_ind:age   |
| ## | 67.85075                    | 6.34083          | -0.28738        | 0.00915        |

```
## # A tibble: 2 x 4
## age Treated Control effects
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 25 67.2 60.7 6.57
## 2 50 60.3 53.5 6.80
```

Run a regression of thermometer scores for transgender people in wave 1 on the treatment indicator (treat\_ind), Obama thermometer scores at baseline (therm\_obama\_t0), and the interaction between the two variables.

What is the estimated effect of the intervention for someone who rated Obama at 0? For someone who rated Obama at 100?

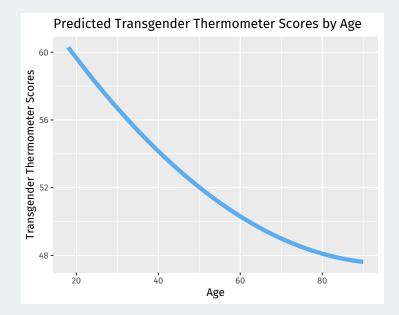
#### 

#### ## ## Call: ## lm(formula = therm trans t1 ~ treat ind \* therm obama t0, data = phobia) ## Coefficients: ## (Intercept) ## treat ind therm obama t0 ## 46.214 -6.465 0.133 ## treat ind:therm obama t0 ## 0.181

```
## # A tibble: 2 x 4
## therm_obama_t0 Treated Control effects
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 0 39.7 46.2 -6.47
## 2 100 71.2 59.5 11.7
```

Run a regression of baseline transgender thermometer scores (therm\_trans\_t0) on age and the square of age to assess the nonlinear relationship between them.

Calculate predicted values from the model for ages 18 to 90 and plot these as a line.


```
agesq_fit <- lm(therm_trans_t0 ~ age + I(age ^ 2), data = phobia)
agesq_fit</pre>
```

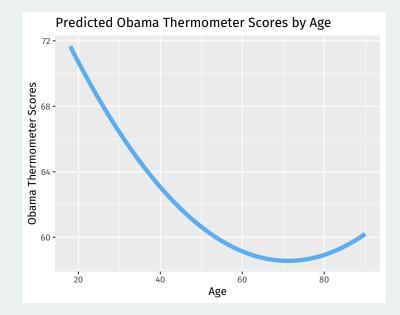
| ##                               |                                                                                            |  |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| ##                               | Call:                                                                                      |  |  |  |  |
| ##                               | lm(formula = therm_trans_t0 ~ age + I(age^2), data = phobia)                               |  |  |  |  |
| ##                               |                                                                                            |  |  |  |  |
| ##                               | Coefficients:                                                                              |  |  |  |  |
| ##                               | (Intercept) age I(age^2)                                                                   |  |  |  |  |
| ##                               | 66.80112 -0.39864 0.00206                                                                  |  |  |  |  |
| pred_data <- tibble(age = 18:90) |                                                                                            |  |  |  |  |
|                                  | pred_data\$pred_therm <- predict(agesq_fit, newdata = pred_data)<br>head(pred_data, n = 3) |  |  |  |  |

## # A tibble: 3 x 2
## age pred\_therm
## <int> <dbl>
## 1 18 60.3
## 2 19 60.0
## 3 20 59.7

ggplot(pred\_data, aes(x = age, y = pred\_therm)) +
 geom\_line(size = 2, color = "steelblue2") +
 labs(x = "Age", y = "Transgender Thermometer Scores",
 title = "Predicted Transgender Thermometer Scores by Age")

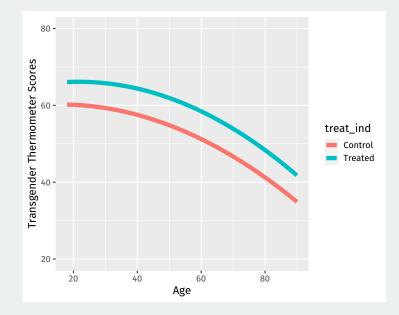
## Answer 5 (cont'd)




Run a regression of baseline Obama thermometer scores (therm\_obama\_t0) on age and the square of age to assess the nonlinear relationship between them.

Calculate predicted values from the model for ages 18 to 90 and plot these as a line.

<code>agesq\_obama\_fit <- lm(therm\_obama\_t0 ~ age + I(age ^ 2), data = phobia)</code> <code>agesq\_obama\_fit</code>


| ## |                                  |                |                   |                               |
|----|----------------------------------|----------------|-------------------|-------------------------------|
| ## | Call:                            |                |                   |                               |
| ## | <pre>lm(formula =</pre>          | therm_obama_t0 | ~ age + I(age^2)  | , data = phobia)              |
| ## |                                  |                |                   |                               |
| ## | Coefficients                     | :              |                   |                               |
| ## | (Intercept)                      | age            | I(age^2)          |                               |
| ## | 82.04797                         | -0.66011       | 0.00464           |                               |
|    | ed_data\$pred_d<br>ad(pred_data, | - '            | oredict(agesq_oba | uma_fit, newdata = pred_data) |

| # | # | # | A tib       | ole: 3 x 3  |                  |
|---|---|---|-------------|-------------|------------------|
| # | # |   | age         | pred_therm  | pred_obama_therm |
| # | # |   | <int></int> | <dbl></dbl> | <dbl></dbl>      |
| # | # | 1 | 18          | 60.3        | 71.7             |
| # | # | 2 | 19          | 60.0        | 71.2             |
| # | # | 3 | 20          | 59.7        | 70.7             |



Run a regression of wave 1 transgender thermometer scores on the following: treatment indicator, age, age squared, the interaction between treatment and age, and the interaction between treatment and age squared. Create a plot of the predicted curves of the treated and control groups as a function of age.

## Answer 7 (cont'd)

