Live Tidy Meeting Week 5: Effect of Newspaper Endorsements

Matthew Blackwell

Gov 51 (Harvard)

- Can the media persuade people to vote differently?
- Hard problem from a causal POV because people **choose** their media.
 - Liberals choose to watch MSNBC and conservatives choose to watch Fox News
- Could do a lab experiment, but concerns about external validity.

- Two political scientists tried to get around these issues in a particular moment in UK politics.
- Between 1992 and 1997, 4 UK newspapers switched their endorsements from Conservatives to Labour
 - Big surprise to the public!
- Our question: did readers of the switching newspapers vote differently in 1997?

library(tidyverse)

news <- read.csv("data/newspapers.csv")</pre>

Name	Description
to_labour	Read a newspaper that switched endorsement to Labour between 1992 and 1997 (1=Yes, 0=No)?
vote_lab_92	Did respondent vote for Labour in 1992 election (1=Yes, 0=No)?
vote_lab_97	Did respondent vote for Labour in 1997 election (1=Yes, 0=No)?
age	Age of respondent
male	Does the respondent identify as Male (1=Yes, 0=No)?
parent_labour work_class	Did the respondent's parents vote for Labour (1=Yes, 0=No)? Does the respondent identify as working class (1=Yes, 0=No)?

Calculate the average treatment effect of reading a switching to Labour paper on voting for Labour in 1997 under a cross-sectional design.

Why might we not believe this estimate of the average treatment effect?

```
## couple of ways to do this.
## first way is "pure tidy"
ate_pure <- news %>%
group_by(to_labour) %>%
summarize(across(vote_lab_97, mean), .groups = "drop") %>%
summarize(
    ate = vote_lab_97[to_labour == "1"] -
       vote_lab_97[to_labour == "0"]
)
ate pure
```

```
## # A tibble: 1 x 1
## ate
## <dbl>
## 1 0.148
```

```
## alternative is to use filter() to create subsets and then use mean(
switched <- news %>%
   filter(to_labour == 1)
no_change <- news %>%
   filter(to_labour == 0)
ate <- mean(switched$vote_lab_97) - mean(no_change$vote_lab_97)
ate</pre>
```

[1] 0.148

Let's estimate the treatment effect using a before-and-after design. Calculate the difference between average vote for Labour in 1997 and average vote for Labour in 1992 **in the treated group**.

How does this estimate of the treatment effect compare to the cross-sectional design?

ate_ba <- mean(switched\$vote_lab_97) - mean(switched\$vote_lab_92) ate_ba</pre>

[1] 0.172

With the cross-sectional design, we might be worried about confounding here, so let's use **statistical control** and calculate the difference in means of vote_lab_97 across the treatment and control groups within levels of one possible confounder: did the respondent's parents vote for Labour?

```
news %>%
group_by(parent_labour, to_labour) %>%
summarize(across(vote_lab_97, mean)) %>%
pivot_wider(
    names_from = to_labour,
    values_from = vote_lab_97
) %>%
mutate(diff by parent = `1` - `0`)
```

Answer 3 (slightly nicer version)

```
news %>%
 mutate(
   to_labour = ifelse(to_labour == 1, "switched", "no_change"),
   parent_labour = ifelse(
      parent_labour == 1,
     "Parent Voted Labour",
     "Parent Didn't Vote Labour")
  ) %>%
  group_by(parent_labour, to_labour) %>%
  summarize(across(vote_lab_97, mean)) %>%
 pivot wider(
   names_from = to_labour,
   values from = vote lab 97
  ) %>%
 mutate(diff_by_parent = switched - no_change)
```

##	#	A tibble: 2 x 4			
##	#	Groups: parent_labour [2	2]		
##		parent_labour	no_change	switched	diff_by_parent
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Parent Didn't Vote Labour	0.270	0.47	0.200
##	2	Parent Voted Labour	0.599	0.679	0.0804

Use the same statistical control strategy to estimate the difference in means between the treated and control groups within levels of whether the respondent identified as working class (work_class).

```
news %>%
group_by(work_class, to_labour) %>%
summarize(across(vote_lab_97, mean)) %>%
pivot_wider(
    names_from = to_labour,
    values_from = vote_lab_97
) %>%
mutate(diff by parent = `1` - `0`)
```

We might want to check the proportion of switchers there are in more complicated groups of the covariates. Create a new variable that takes on four values for each combination of male and work_class and calculate the difference in means within these groups.

```
news %>%
mutate(
   gender_class = case_when(
      male == 1 & work_class == 1 ~ "Working Class Man",
   male == 0 & work_class == 1 ~ "Working Class Woman",
   male == 1 & work_class == 0 ~ "Non-working Class Man",
   male == 0 & work_class == 0 ~ "Non-working Class Woman"
   ),
   to_labour = ifelse(to_labour == 1, "Treated", "Control")
) %>%
group_by(gender_class, to_labour) %>%
summarize(across(vote_lab_97, mean)) %>%
pivot_wider(names_from = to_labour, values_from = vote_lab_97) %>%
mutate(est ate = Treated - Control)
```

```
## # A tibble: 4 x 4
## # Groups: gender_class [4]
## gender_class Control Treated est_ate
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Non-working Class Man 0.242 0.435 0.193
## 2 Non-working Class Woman 0.269 0.387 0.118
## 3 Working Class Man 0.576 0.688 0.112
## 4 Working Class Woman 0.532 0.655 0.122
```

Create a variable called age_group that groups respondents into the following groups by age:

- age is 25 and under,
- age is between 26-40,
- age is between 41-60, and
- age is 61 and over.

Calculate the difference in means between the treatment and control groups within levels of this variable.

```
news %>%
mutate(
    age_group = case_when(
        age <= 25 ~ "<= 25",
        age >= 26 & age <= 40 ~ "26-40",
        age >= 26 & age <= 60 ~ "41-60",
        age >= 61 ~ ">= 61",
        ),
        to_labour = ifelse(to_labour == 1, "Treated", "Control")
) %>%
group_by(age_group, to_labour) %>%
summarize(across(vote_lab_97, mean)) %>%
pivot_wider(names_from = to_labour, values_from = vote_lab_97) %>%
mutate(est ate = Treated - Control)
```

```
## # A tibble: 4 x 4
## # Groups: age_group [4]
## age_group Control Treated est_ate
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 <= 25 0.6 0.421 -0.179
## 2 >= 61 0.415 0.614 0.198
## 3 26-40 0.48 0.617 0.137
## 4 41-60 0.375 0.570 0.195
```