Gov 51: Hypothesis Tests for Sample Means

Matthew Blackwell

Harvard University

- Last time: hypothesis testing for a sample proportion.
 - Binary data \rightsquigarrow easy setting.
 - Distribution of samples just depends on population proportion.
- This time: hypothesis testing for means of any variable.

Conducted with several steps:

- 1. Specify your null and alternative hypotheses
- 2. Choose an appropriate **test statistic** and level of test α
- 3. Derive the **reference distribution** of the test statistic under the null.
- 4. Use this distribution to calculate the **p-value**.
- 5. Use p-value to decide whether to reject the null hypothesis or not
- This procedure is general, but we'll focus on tests of a single population mean today.

Test statistic

A **test statistic** is a function of data and possibly the null hypothesis used to adjudicate between the null and alternative hypotheses.

• Most common form for sample means is the *z*-statistic:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

• Put differently:

$$Z = \frac{\text{observed - null guess}}{SE}$$

- How many SEs away from the null guess is the sample mean?
- Usually replace population SD σ with sample SD $\hat{\sigma}$

Example: thermometer scores

- Social scientists often use **thermometer scores** to assess views toward groups.
 - 0-100 scale, where higher is "warmer" feeling toward group.
- You work at advocacy group who got a survey with FT scores for transgender people.
 - $\overline{X} = 52.3$ and SD $\hat{\sigma} = 29.3$
 - Sample size, n = 912
- Co-worker Nully is weirdly insistent that these results are consistent with a population mean FT score of 50.
- Hypothesis tests to the rescue!

- Hypotheses:
 - $H_0: \mu = 50$, population average is 50.
 - $H_1: \mu \neq 50$
- Test statistic:

$$Z_{\text{obs}} = \frac{\overline{X} - \mu}{\hat{\sigma}/\sqrt{n}} = \frac{52.3 - 50}{29.3/\sqrt{900}}$$
$$\approx -2.35$$

- Observed average is 2.35 SEs away from the null!
 - Exactly how unlikely is this?

Determining the reference distribution

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

- What is the distribution of *Z*?
- With sample proportions, we relied on the binomial distribution.
 - Doesn't work if variable is non-binary (age, income, etc)
- Central limit theorem to the rescue! In large samples and under the null:
 - \overline{X} is normal with mean μ and standard deviation σ/\sqrt{n} .
 - Z will be standard normal (mean 0, SD 1)
- Large samples also justify using sample SD ($\hat{\sigma}$) in place of population SD (σ).

- Step 4: determine the p-value.
 - The **p-value** is the probability of observing a test statistic as extreme as Z_{obs} , if the null hypothesis is true.
 - + Smaller p-values \rightsquigarrow data less likely under the null \rightsquigarrow null less plausible
- How to calculate?
 - We know Z is distributed standard normal \rightsquigarrow use R!

Standard normal probabilities in R

• The pnorm(x) function will give the probability of being less x in a standard normal:

pnorm(-2.35)

[1] 0.00939

One-sided vs. two-sided tests

• two-sided p-value: 0.018

- Central limit theorem justifies the z-test we've been doing.
 - "Sums and means of random variables tend to be normally distributed as sample sizes get big."
- What if our sample sizes are low?
 - Distribution of \overline{X} will be unknown
 - \rightsquigarrow can't determine p-values
 - ~> can't get z values for confidence intervals
- Very difficult to get around this problem without more information.

Solution to small samples?

- Common approach: assume data X_i are **normally distributed**
 - THIS IS AN ASSUMPTION, PROBABLY IS WRONG.
 - For instance, if X_i is binary, then it is very wrong.
- If true, then we can determine the distribution of the following test statistic:

$$T = rac{\overline{X} - \mu}{\widehat{\operatorname{SE}}} \sim t_{n-1}$$

- T follows a Student's t distribution with n-1 degrees of freedom.
 - Degrees of freedom determines the spread of the distribution.
 - Centered around 0
 - Similar to normal with fatter tails \rightsquigarrow higher likelihood of extreme events.

Who was Student?

Student's t distribution

Student's t distribution

- z-tests are what we have seen: relies on the normal distribution.
 - Justified in large samples (roughly n>30) by CLT
- *t*-tests rely on the the t-distribution for calculating p-values.
 - Justified in small samples if data is normally distributed.
- Common practice is to use *t*-tests all the time because *t* is "conservative"
 - \rightsquigarrow p-values will always be larger under *t*-test
 - \rightsquigarrow always less likely to reject null under t
 - + t-distribution converges to standard normal as $n
 ightarrow \infty$
- R will almost always calculate p-values for you, so details of t-distribution aren't massively important.