Gov 51: What Is A Hypothesis Test?

Matthew Blackwell

Harvard University

• You're skeptical that she can tell the difference, so you devise a test:

- You're skeptical that she can tell the difference, so you devise a test:
 - Prepare 8 cups of tea, 4 milk-first, 4 tea-first

- You're skeptical that she can tell the difference, so you devise a test:
 - Prepare 8 cups of tea, 4 milk-first, 4 tea-first
 - Present cups to friend in a random order

- You're skeptical that she can tell the difference, so you devise a test:
 - Prepare 8 cups of tea, 4 milk-first, 4 tea-first
 - Present cups to friend in a **random** order
 - Ask friend to pick which 4 of the 8 were milk-first.

• Friend picks out all 4 milk-first cups correctly!

- Friend picks out all 4 milk-first cups correctly!
- Statistical thought experiment: how often would she get all 4 correct if she were guessing randomly?

- Friend picks out all 4 milk-first cups correctly!
- Statistical thought experiment: how often would she get all 4 correct **if she were guessing randomly**?
 - Only one way to choose all 4 correct cups.

- Friend picks out all 4 milk-first cups correctly!
- Statistical thought experiment: how often would she get all 4 correct if she were guessing randomly?
 - Only one way to choose all 4 correct cups.
 - But 70 ways of choosing 4 cups among 8.

- Friend picks out all 4 milk-first cups correctly!
- Statistical thought experiment: how often would she get all 4 correct if she were guessing randomly?
 - Only one way to choose all 4 correct cups.
 - But 70 ways of choosing 4 cups among 8.
 - Choosing at random pprox picking each of these 70 with equal probability.

- Friend picks out all 4 milk-first cups correctly!
- Statistical thought experiment: how often would she get all 4 correct if she were guessing randomly?
 - Only one way to choose all 4 correct cups.
 - But 70 ways of choosing 4 cups among 8.
 - Choosing at random pprox picking each of these 70 with equal probability.
- Chances of guessing all 4 correct is $\frac{1}{70}\approx 0.014$ or 1.4%.

- Friend picks out all 4 milk-first cups correctly!
- Statistical thought experiment: how often would she get all 4 correct if she were guessing randomly?
 - Only one way to choose all 4 correct cups.
 - But 70 ways of choosing 4 cups among 8.
 - Choosing at random pprox picking each of these 70 with equal probability.
- Chances of guessing all 4 correct is $\frac{1}{70}\approx 0.014$ or 1.4%.
- \rightsquigarrow the guessing hypothesis might be implausible.

• Statistical hypothesis testing is a **thought experiment**.

- Statistical hypothesis testing is a thought experiment.
 - · Could our results just be due to random chance?

- Statistical hypothesis testing is a thought experiment.
 - · Could our results just be due to random chance?
- What would the world look like if we knew the truth?

- Statistical hypothesis testing is a thought experiment.
 - · Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:

- Statistical hypothesis testing is a thought experiment.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.

- Statistical hypothesis testing is a **thought experiment**.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.

- Statistical hypothesis testing is a thought experiment.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.
 - Should you conclude that the analyst is wrong?

- Statistical hypothesis testing is a thought experiment.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.
 - Should you conclude that the analyst is wrong?
- Example 2:

- Statistical hypothesis testing is a **thought experiment**.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.
 - Should you conclude that the analyst is wrong?
- Example 2:
 - Trump won 47.5% of the vote in the 2020 election.

- Statistical hypothesis testing is a thought experiment.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.
 - Should you conclude that the analyst is wrong?
- Example 2:
 - Trump won 47.5% of the vote in the 2020 election.
 - Last YouGov poll of 1,363 likely voters said 44% planned to vote for Trump.

- Statistical hypothesis testing is a thought experiment.
 - Could our results just be due to random chance?
- What would the world look like if we knew the truth?
- Example 1:
 - An analyst claims that 20% of Boston households are in poverty.
 - You take a sample of 900 households and find that 23% of the sample is under the poverty line.
 - Should you conclude that the analyst is wrong?
- Example 2:
 - Trump won 47.5% of the vote in the 2020 election.
 - Last YouGov poll of 1,363 likely voters said 44% planned to vote for Trump.
 - Could the difference between the poll and the outcome be just due to random chance?

• Null hypothesis: Some statement about the population parameters.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .
 - It is the opposite of the null hypothesis.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .
 - It is the opposite of the null hypothesis.
 - An observed difference is real, not just due to chance.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .
 - It is the opposite of the null hypothesis.
 - An observed difference is real, not just due to chance.
 - Ex: polling for Trump is systematically wrong.

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .
 - It is the opposite of the null hypothesis.
 - An observed difference is real, not just due to chance.
 - Ex: polling for Trump is systematically wrong.
 - Denoted H_1 or H_a

- Null hypothesis: Some statement about the population parameters.
 - "Devil's advocate" position \rightsquigarrow assumes what you seek to prove wrong.
 - Usually that an observed difference is due to chance.
 - Ex: poll drawn from the same population as all voters.
 - Denoted H_0
- Alternative hypothesis: The statement we hope or suspect is true instead of H_0 .
 - It is the opposite of the null hypothesis.
 - An observed difference is real, not just due to chance.
 - Ex: polling for Trump is systematically wrong.
 - Denoted H_1 or H_a
- Probabilistic proof by contradiction: try to "disprove" the null.

• Are we polling the same population as the actual voters?
- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?
- What is the parameter we want to learn about?

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?
- What is the parameter we want to learn about?
 - True population mean of the surveys, *p*.

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?
- What is the parameter we want to learn about?
 - True population mean of the surveys, *p*.
 - Null hypothesis: $H_0: p = 0.475$ (surveys drawing from same population)

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?
- What is the parameter we want to learn about?
 - True population mean of the surveys, *p*.
 - Null hypothesis: $H_0: p = 0.475$ (surveys drawing from same population)
 - Alternative hypothesis: $H_1: p \neq 0.475$

- Are we polling the same population as the actual voters?
 - If so, how likely are we to see polling error this big by chance?
- What is the parameter we want to learn about?
 - True population mean of the surveys, *p*.
 - Null hypothesis: $H_0: p = 0.475$ (surveys drawing from same population)
 - Alternative hypothesis: $H_1: p
 eq 0.475$
- Data: poll has $\overline{X} = 0.44$ with n = 1363.

• If the null were true, what should the distribution of the data be?

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondents *i* will vote for Trump.

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondents *i* will vote for Trump.
 - Under null, X_i is Bernoulli with p = 0.475.

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondents *i* will vote for Trump.
 - Under null, X_i is Bernoulli with p = 0.475.
 - $\sum_{i=1}^{N} X_i$ is the number in sample that will vote for Trump.

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondents *i* will vote for Trump.
 - Under null, X_i is Bernoulli with p = 0.475.
 - $\sum_{i=1}^{N} X_i$ is the number in sample that will vote for Trump.
 - This sum will be Binomial with n = 1363 and p = 0.475

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondents *i* will vote for Trump.
 - Under null, X_i is Bernoulli with p = 0.475.
 - $\sum_{i=1}^{N} X_i$ is the number in sample that will vote for Trump.
 - This sum will be Binomial with n = 1363 and p = 0.475
- We can simulate draws from this distribution!

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondents *i* will vote for Trump.
 - Under null, X_i is Bernoulli with p = 0.475.
 - $\sum_{i=1}^{N} X_i$ is the number in sample that will vote for Trump.
 - This sum will be Binomial with n = 1363 and p = 0.475
- We can simulate draws from this distribution!
- Compare the distribution of proportions under the null to the observed proportion.

- If the null were true, what should the distribution of the data be?
 - X_i is 1 if respondents *i* will vote for Trump.
 - Under null, X_i is Bernoulli with p = 0.475.
 - $\sum_{i=1}^{N} X_i$ is the number in sample that will vote for Trump.
 - This sum will be Binomial with n = 1363 and p = 0.475
- We can simulate draws from this distribution!
- Compare the distribution of proportions under the null to the observed proportion.

Simulations of the null distribution

p-value

The **p-value** is the probability of observing data as or more extreme as our data under the null.

• If the null is true, how often would we expect polling errors this big?

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!
- p-values are usually **two-sided**:

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!
- p-values are usually **two-sided**:
 - Observed error of 0.44 0.475 = -0.035 under the null.

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!
- p-values are usually **two-sided**:
 - Observed error of 0.44 0.475 = -0.035 under the null.
 - p-value is probability of sample proportions being less than 0.44 **plus**

p-value

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!
- p-values are usually **two-sided**:
 - Observed error of 0.44 0.475 = -0.035 under the null.
 - p-value is probability of sample proportions being less than 0.44 **plus**
 - Probability of sample proportions being greater than 0.475 + 0.035 = 0.51.

p-value

The **p-value** is the probability of observing data as or more extreme as our data under the null.

- If the null is true, how often would we expect polling errors this big?
 - Smaller p-value \rightsquigarrow stronger evidence against the null
 - NOT the probability that the null is true!
- p-values are usually **two-sided**:
 - Observed error of 0.44 0.475 = -0.035 under the null.
 - p-value is probability of sample proportions being less than 0.44 **plus**
 - Probability of sample proportions being greater than 0.475 + 0.035 = 0.51.

mean(trump_shares < 0.44) + mean(trump_shares > 0.51)

[1] 0.01

Two-sided p-value

• Sometimes our hypothesis is directional.

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- **One-sided alternative**: polls underestimate Trump support.

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- **One-sided alternative**: polls underestimate Trump support.
 - $H_1: p < 0.475$

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- One-sided alternative: polls underestimate Trump support.
 - $H_1: p < 0.475$
- Makes the p-value one-sided:

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- One-sided alternative: polls underestimate Trump support.
 - $H_1: p < 0.475$
- Makes the p-value one-sided:
 - What's the probability of a random sample underestimating Trump support by as much as we see in the sample?

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- One-sided alternative: polls underestimate Trump support.
 - $H_1: p < 0.475$
- Makes the p-value one-sided:
 - What's the probability of a random sample underestimating Trump support by as much as we see in the sample?
 - Always smaller than a two-sided p-value.

- Sometimes our hypothesis is directional.
 - We only consider evidence against the null from one direction.
- Null: our polls are from the same population as actual voters
 - $H_0: p = 0.475$
- One-sided alternative: polls underestimate Trump support.
 - $H_1: p < 0.475$
- Makes the p-value one-sided:
 - What's the probability of a random sample underestimating Trump support by as much as we see in the sample?
 - Always smaller than a two-sided p-value.

mean(trump_shares < 0.44)</pre>

[1] 0.006

• Tests usually end with a decision to reject the null or not.

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** *α*: the threshold for a test.

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** α : the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** α : the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "
 - · Otherwise "fail to reject" or "retain", not "accept the null"

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** α : the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "
 - · Otherwise "fail to reject" or "retain", not "accept the null"
- Common (arbitrary) thresholds:

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** α : the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "
 - · Otherwise "fail to reject" or "retain", not "accept the null"
- Common (arbitrary) thresholds:
 - $p \geq 0.1$ "not statistically significant"

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** α : the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "
 - · Otherwise "fail to reject" or "retain", not "accept the null"
- Common (arbitrary) thresholds:
 - + $p \geq 0.1$ "not statistically significant"
 - p < 0.05 "statistically significant"

- Tests usually end with a decision to reject the null or not.
- Choose a threshold below which you'll reject the null.
 - **Test level** α : the threshold for a test.
 - Decision rule: "reject the null if the p-value is below α "
 - · Otherwise "fail to reject" or "retain", not "accept the null"
- Common (arbitrary) thresholds:
 - $p \geq 0.1$ "not statistically significant"
 - p < 0.05 "statistically significant"
 - *p* < 0.01 "highly significant"

• A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

	H_0 True	H_0 False
Retain H_0	Awesome!	Type II error
Reject H_0	Type I error	Good stuff!

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

	H_0 True	H_0 False
Retain H_0	Awesome!	Type II error
Reject H_0	Type I error	Good stuff!

• Type I error because it's the worst

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

	H_0 True	H_0 False
Retain H_0	Awesome!	Type II error
Reject H_0	Type I error	Good stuff!

- Type I error because it's the worst
 - "Convicting" an innocent null hypothesis

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

	H_0 True	H_0 False
Retain H_0	Awesome!	Type II error
Reject H_0	Type I error	Good stuff!

- Type I error because it's the worst
 - "Convicting" an innocent null hypothesis
- Type II error less serious

- A p-value of 0.05 says that data this extreme would only happen in 5% of repeated samples if the null were true.
 - \rightsquigarrow 5% of the time we'll reject the null when it is actually true.
- Test errors:

	H_0 True	H_0 False
Retain H_0	Awesome!	Type II error
Reject H_0	Type I error	Good stuff!

- Type I error because it's the worst
 - "Convicting" an innocent null hypothesis
- Type II error less serious
 - · Missed out on an awesome finding