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The lady tasting tea

Your friend asks you to grab a tea with milk for her before meeting
up and she says that she prefers tea poured before the milk. You
stop by a local tea shop and ask for a tea with milk. When you bring
it to her, she complains that it was prepared milk-first.

• You’re skeptical that she can tell the difference, so you devise a test:

• Prepare 8 cups of tea, 4 milk-first, 4 tea-first
• Present cups to friend in a random order
• Ask friend to pick which 4 of the 8 were milk-first.
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Assuming we know the truth

• Friend picks out all 4 milk-first cups correctly!

• Statistical thought experiment: how often would she get all 4 correct if
she were guessing randomly?

• Only one way to choose all 4 correct cups.
• But 70 ways of choosing 4 cups among 8.
• Choosing at random ≈ picking each of these 70 with equal probability.

• Chances of guessing all 4 correct is 𝟣
𝟩𝟢 ≈ 𝟢.𝟢𝟣𝟦 or 1.4%.

• ⇝ the guessing hypothesis might be implausible.
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Statistical hypothesis testing

• Statistical hypothesis testing is a thought experiment.

• Could our results just be due to random chance?

• What would the world look like if we knew the truth?

• Example 1:

• An analyst claims that 20% of Boston households are in poverty.
• You take a sample of 900 households and find that 23% of the sample is
under the poverty line.

• Should you conclude that the analyst is wrong?

• Example 2:

• Trump won 47.5% of the vote in the 2020 election.
• Last YouGov poll of 1,363 likely voters said 44% planned to vote for
Trump.

• Could the difference between the poll and the outcome be just due to
random chance?
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Null and alternative hypothesis

• Null hypothesis: Some statement about the population parameters.

• “Devil’s advocate” position⇝ assumes what you seek to prove wrong.
• Usually that an observed difference is due to chance.
• Ex: poll drawn from the same population as all voters.
• Denoted 𝘏𝟢

• Alternative hypothesis: The statement we hope or suspect is true
instead of 𝘏𝟢.

• It is the opposite of the null hypothesis.
• An observed difference is real, not just due to chance.
• Ex: polling for Trump is systematically wrong.
• Denoted 𝘏𝟣 or 𝘏𝘢

• Probabilistic proof by contradiction: try to “disprove” the null.
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Hypothesis testing example

• Are we polling the same population as the actual voters?

• If so, how likely are we to see polling error this big by chance?

• What is the parameter we want to learn about?

• True population mean of the surveys, 𝘱.
• Null hypothesis: 𝘏𝟢 ∶ 𝘱 = 𝟢.𝟦𝟩𝟧 (surveys drawing from same
population)

• Alternative hypothesis: 𝘏𝟣 ∶ 𝘱 ≠ 𝟢.𝟦𝟩𝟧

• Data: poll has 𝘟 = 𝟢.𝟦𝟦 with 𝘯 = 𝟣𝟥𝟨𝟥.
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Statistical thought experiment

• If the null were true, what should the distribution of the data be?

• 𝘟𝘪 is 1 if respondents 𝘪 will vote for Trump.
• Under null, 𝘟𝘪 is Bernoulli with 𝘱 = 𝟢.𝟦𝟩𝟧.
• ∑𝘕

𝘪=𝟣 𝘟𝘪 is the number in sample that will vote for Trump.
• This sum will be Binomial with 𝘯 = 𝟣𝟥𝟨𝟥 and 𝘱 = 𝟢.𝟦𝟩𝟧

• We can simulate draws from this distribution!

• Compare the distribution of proportions under the null to the observed
proportion.

trump_voters <- rbinom(n = 1000, size = 1363, prob = 0.475)
trump_shares <- trump_voters / 1363
hist(trump_shares, xlim = c(0.4, 0.55),

xlab = ”Simulated sample proportions supporting Trump”,
main = ””)

abline(v = 0.44, col = ”indianred”, lwd = 3)
abline(v = 0.475, lwd = 3)
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Simulations of the null distribution

Simulated sample proportions supporting Trump
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p-value

p-value

The p-value is the probability of observing data as or more extreme as our
data under the null.

• If the null is true, how often would we expect polling errors this big?

• Smaller p-value⇝ stronger evidence against the null
• NOT the probability that the null is true!

• p-values are usually two-sided:

• Observed error of 0.44 - 0.475 = -0.035 under the null.
• p-value is probability of sample proportions being less than 0.44 plus
• Probability of sample proportions being greater than 0.475 + 0.035 = 0.51.

mean(trump_shares < 0.44) + mean(trump_shares > 0.51)

## [1] 0.01
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Two-sided p-value

Simulated sample proportions supporting Trump
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One-sided tests

• Sometimes our hypothesis is directional.

• We only consider evidence against the null from one direction.

• Null: our polls are from the same population as actual voters

• 𝘏𝟢 ∶ 𝘱 = 𝟢.𝟦𝟩𝟧

• One-sided alternative: polls underestimate Trump support.

• 𝘏𝟣 ∶ 𝘱 < 𝟢.𝟦𝟩𝟧

• Makes the p-value one-sided:

• What’s the probability of a random sample underestimating Trump
support by as much as we see in the sample?

• Always smaller than a two-sided p-value.

mean(trump_shares < 0.44)

## [1] 0.006
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Rejecting the null

• Tests usually end with a decision to reject the null or not.

• Choose a threshold below which you’ll reject the null.

• Test level 𝛼: the threshold for a test.
• Decision rule: “reject the null if the p-value is below 𝛼”
• Otherwise “fail to reject” or “retain”, not “accept the null”

• Common (arbitrary) thresholds:

• 𝘱 ≥ 𝟢.𝟣 “not statistically significant”
• 𝘱 < 𝟢.𝟢𝟧 “statistically significant”
• 𝘱 < 𝟢.𝟢𝟣 “highly significant”
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Testing errors

• A p-value of 0.05 says that data this extreme would only happen in 5%
of repeated samples if the null were true.

• ⇝ 5% of the time we’ll reject the null when it is actually true.

• Test errors:

𝘏𝟢 True 𝘏𝟢 False
Retain 𝘏𝟢 Awesome! Type II error
Reject 𝘏𝟢 Type I error Good stuff!

• Type I error because it’s the worst

• “Convicting” an innocent null hypothesis

• Type II error less serious

• Missed out on an awesome finding
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