Gov 51: Linear Regression with Multiple Predictors

Matthew Blackwell

Harvard University

Loading the midterms data

midterms <- read.csv("data/midterms.csv") head(midterms)</pre>

##		year	president	party	approval	seat.change
##	1	1946	Truman	D	33	-55
##	2	1950	Truman	D	39	-29
##	3	1954	Eisenhower	R	61	- 4
##	4	1958	Eisenhower	R	57	-47
##	5	1962	Kennedy	D	61	- 4
##	6	1966	Johnson	D	44	-47
##		rdi.	change			
##	1		NA			
##	2		8.2			
##	3		1.0			
##	4		1.1			
##	5		5.0			
##	6		5.3			

fit.app <- lm(seat.change ~ approval, data = midterms) fit.app</pre>

```
##
## Call:
## Call:
## lm(formula = seat.change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.84 1.42
```

fit.rdi <- lm(seat.change ~ rdi.change, data = midterms) fit.rdi</pre>

```
##
## Call:
## Call:
## lm(formula = seat.change ~ rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) rdi.change
## -27.4 1.0
```

• What if we want to predict Y as a function of many variables?

seat.change_i = $\alpha + \beta_1$ approval_i + β_2 rdi.change_i + ϵ_i

- Better predictions (at least in-sample).
- Better interpretation as **ceteris paribus** relationships:
 - β_1 is the relationship between approval and seat.change holding rdi.change constant.

Multiple regression in R

mult.fit

##						
##	Call:					
##	lm(formula =	seat.change ~	approval +	rdi.change,	data =	midterms)
##						
##	Coefficients	:				
##	(Intercept)	approval	rdi.change			
##	-120.44	1.57	3.33			

- + $\hat{\alpha}$ = -120.4: average seat change president has 0% approval and no change in income levels.
- $\hat{\beta}_1 =$ 1.57: average increase in seat change for additional percentage point of approval, **holding RDI change fixed**
- $\hat{\beta}_2 =$ 3.334: average increase in seat change for each additional percentage point increase of RDI, **holding approval fixed**

Least squares with multiple regression

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$\widehat{\epsilon_i} = \texttt{seat.change}_i - \widehat{lpha} - \widehat{eta}_1 \texttt{approval}_i - \widehat{eta}_2 \texttt{rdi.change}_i$$

• Find the coefficients that minimizes the sum of the squared residuals:

$$\mathrm{SSR} = \sum_{i=1}^n \hat{\epsilon}_i^2 = (Y_i - \hat{\alpha} - \hat{\beta}_1 X_{i1} - \hat{\beta}_2 X_{i2})^2$$

- R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - If the added covariates doesn't help predict, adjusted R^2 goes down!

summary(fit.app)\$r.squared

[1] 0.431

summary(mult.fit)\$r.squared

[1] 0.445

summary(mult.fit)\$adj.r.squared

[1] 0.366