Gov 51: Linear Regression

Matthew Blackwell

Harvard University

- I've been tracking my physical activity and weight for a few years now.
- Can we use my activity to predict my weight on a day-to-day basis?

Name	Description
date	date of measurements
active.calories	calories burned
steps	number of steps taken (in 1,000s)
weight	weight (lbs)
steps.lag	steps on day before (in 1,000s)
calories.lag	calories burned on day before

Predicting using bivariate relationship

- Goal: what's our best guess about Y_i if we know what X_i is?
 - what's our best guess about my weight this morning if I know how many steps I took yesterday?
- Terminology:
 - · Dependent/outcome variable: what we want to predict (weight).
 - · Independent/explanatory variable: what we're using to predict (steps).

• Load the data:

```
health <- read.csv("data/health.csv")
health <- na.omit(health)</pre>
```

• Plot the data:

```
plot(health$steps.lag, health$weight, pch = 19,
    col = "dodgerblue",
    xlim = c(0, 27), ylim = c(150, 180),
    xlab = "Steps on day prior (in 1000s)",
    ylab = "Weight",
    main = "Weight and Steps")
```

Weight and Steps

- Prediction: for any value of X, what's the best guess about Y?
 - Need a function y = f(x) that maps values of X into predictions.
 - Machine learning: fancy ways to determine f(x)
- Simplest possible way to relate two variables: a line.

$$y = mx + b$$

- Problem: for any line we draw, not all the data is on the line.
 - Some points will be above the line, some below.
 - Need a way to account for **chance variation** away from the line.

Linear regression model

• Model for the line of best fit:

$$Y_i = \underbrace{\alpha}_{\text{intercept}} + \underbrace{\beta}_{\text{slope}} \cdot X_i + \underbrace{\epsilon_j}_{\text{error term}}$$

- Coefficients/parameters (α, β): true unknown intercept/slope of the line of best fit.
- **Chance error** ϵ_i : accounts for the fact that the line doesn't perfectly fit the data.
 - Each observation allowed to be off the regression line.
 - Chance errors are 0 on average.
- Useful fiction: this model represents the **data generating process**
 - George Box: "all models are wrong, some are useful"

$$Y_i = \alpha + \beta \cdot X_i + \epsilon_i$$

- Intercept α : average value of Y when X is 0
 - Average weight when I take 0 steps the day prior.
- **Slope** β : average change in *Y* when *X* increases by one unit.
 - Average decrease in weight for each additional 1,000 steps.
- But we don't know α or β . How can we estimate them? Next time...