# Gov 51: Boxplots and QQ-plots

Matthew Blackwell

Harvard University

• Load the assassination attempts data see the possible attempt results.

```
## see the categories of the results variable
leaders <- read.csv("data/leaders.csv")
lev <- unique(leaders$result)
lev</pre>
```

| ## | [1]  | "not wounded"                                 |
|----|------|-----------------------------------------------|
| ## | [2]  | "dies within a day after the attack"          |
| ## | [3]  | "survives, whether wounded unknown"           |
| ## | [4]  | "wounded lightly"                             |
| ## | [5]  | "plot stopped"                                |
| ## | [6]  | "hospitalization but no permanent disability" |
| ## | [7]  | "dies between a day and a week"               |
| ## | [8]  | "dies, timing unknown"                        |
| ## | [9]  | "survives but wounded severely"               |
| ## | [10] | "dies between a week and a month"             |

## Creating an attempt fatal variable

• Use **ifelse** to create a **fatal** variable.

leaders\$fatal <- ifelse(leaders\$result %in% lev[1:4], 1, 0)</pre>

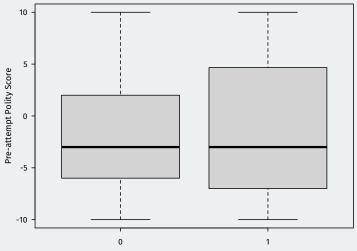
## rate of fatal
head(leaders\$fatal)

## [1] 1 1 1 1 1 1

mean(leaders\$fatal)

## [1] 0.724

### **Remember boxplots?**


• Boxplots were a tool to help visual continuous data.



#### Pre-attempt Democracy Level

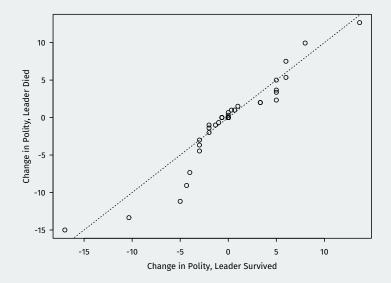
## Comparing distribution with the boxplot

• What if we want to know how the distribution varies by success?



Pre-attempt Democracy Level by Attempt Outcome

Assassination Attempt Outcome


```
boxplot(politybefore ~ fatal, data = leaders,
    names.arg = c("Survived", "Died"),
    main = "Pre-attempt Democracy Level by Attempt Outcome",
    ylab = "Pre-attempt Polity Score",
    xlab = "Assassination Attempt Outcome")
```

- First argument is called a formula, y ~ x:
  - y is the continuous variable whose distribution we want to explore.
  - x is the grouping variable.
  - When using a formula, we need to add a data argument.

## **Quantile-Quantile Plot**

- How do we compare distributions of two variables that are not in the same dataset?
  - Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.
  - (min of X, min of Y)
  - (median of X, median of Y)
  - (25th percentile of X, 25th percentile of Y)
- Intuitions:
  - If distributions are the same  $\rightsquigarrow$  all points on a 45-degree line.
  - Points above  $45^{\circ}$  line  $\rightsquigarrow y$ -axis variable has larger value of the quantile.
  - Points below 45° line  $\rightsquigarrow x$ -axis variable has larger value of the quantile.
  - Steeper slope than 45° line  $\rightsquigarrow$  *y*-axis variable has more spread.
  - Flatter slope than  $45^{\circ}$  line  $\rightsquigarrow x$ -axis variable has more spread.

## **QQ-plot example**

