Gov 51: Summarizing Bivariate Relationships: Cross-tabs, Scatterplots, and Correlation

Matthew Blackwell

Harvard University

leaders <- read.csv("data/leaders.csv") head(leaders[, 1:7])</pre>

##		year	country	leadername	age	politybefore
##	1	1929	Afghanistan	Habibullah Ghazi	39	-6
##	2	1933	Afghanistan	Nadir Shah	53	-6
##	3	1934	Afghanistan	Hashim Khan	50	-6
##	4	1924	Albania	Zogu	29	Θ
##	5	1931	Albania	Zogu	36	-9
##	6	1968	Algeria	Boumedienne	41	-9
##		polit	tyafter inte	rwarbefore		
##	1		-6.00	Θ		
##	2		-7.33	Θ		
##	3		-8.00	Θ		
##	4		-9.00	Θ		
##	5		-9.00	Θ		
##	6		-9.00	Θ		

Contingency tables

- With two categorical variables, we can create contingency tables.
 - Also known as cross-tabs
 - Rows are the values of one variable, columns the other.

##	A	After	
##	Before	Θ	1
##	Θ	177	19
##	1	27	27

• Quick summary how the two variables "go together."

Cross-tabs with proportions

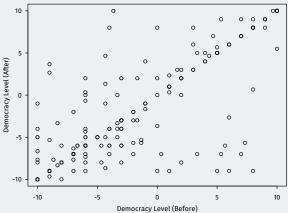
• Use the prop.table() for proportions:

##	ļ	After	
##	Before	Θ	1
##	Θ	0.708	0.076
##	1	0.108	0.108

• We can also ask R to calculate proportions within each row:

##	A	After	
##	Before	Θ	1
##	Θ	0.9031	0.0969
##	1	0.5000	0.5000

• Direct graphical comparison of two continuous variables.

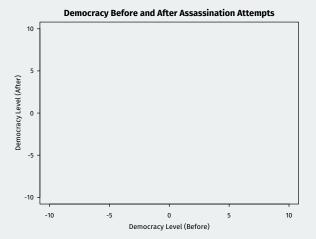


Democracy Before and After Assassination Attempts

- Each point on the scatterplot (x_i, y_i)
- Use the plot() function

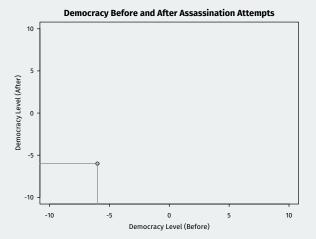
leaders[1, c("politybefore", "polityafter")]

```
## politybefore polityafter
## 1 -6 -6
```



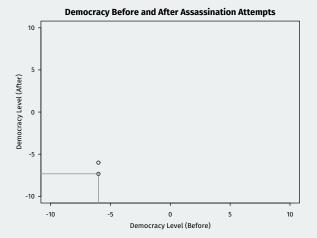
leaders[1, c("politybefore", "polityafter")]

```
## politybefore polityafter
## 1 -6 -6
```



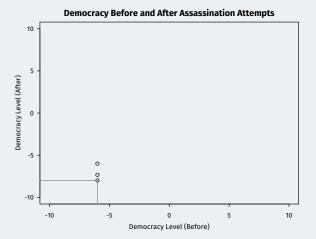
leaders[2, c("politybefore", "polityafter")]

```
## politybefore polityafter
## 2 -6 -7.33
```



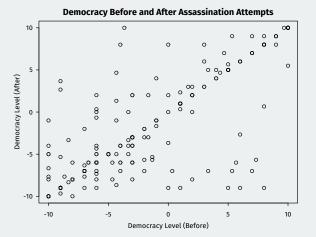
leaders[3, c("politybefore", "polityafter")]

```
## politybefore polityafter
## 3 -6 -8
```



leaders[3, c("politybefore", "polityafter")]

```
## politybefore polityafter
## 3 -6 -8
```



- Would be nice to have a standard summary of how similar variables are.
 - Problem: variables on different scales!
 - Need a way to put any variable on common units.
- **z-score** to the rescue!

z-score of
$$x_i = \frac{x_i - \text{mean of } x}{\text{standard deviation of } x}$$

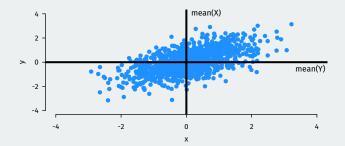
• Crucial property: z-scores don't depend on units

z-score of
$$(ax_i + b) = z$$
-score of x_i

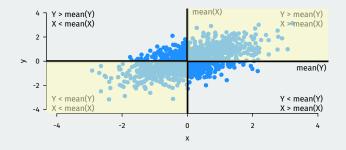
- How do variables move together on average?
- When x_i is big, what is y_i likely to be?
 - Positive correlation: when x_i is big, y_i is also big
 - Negative correlation: when x_i is big, y_i is small
 - High magnitude of correlation: data cluster tightly around a line.
- The technical definition of the correlation coefficient:

$$\frac{1}{n-1} \sum_{i=1}^{n} \left[(z \text{-score for } x_i) \times (z \text{-score for } y_i) \right]$$

Correlation intuition

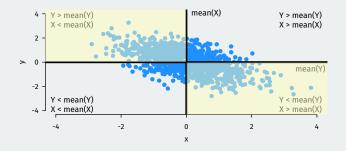


Correlation intuition



- Large values of X tend to occur with large values of Y:
 - (z-score for x_i) × (z-score for y_i) = (pos. num.) × (pos. num) = +
- Small values of X tend to occur with small values of Y:
 - (z-score for x_i) × (z-score for y_i) = (neg. num.) × (neg. num) = +
- If these dominate \rightsquigarrow positive correlation.

Correlation intuition



- Large values of X tend to occur with small values of Y:
 - (z-score for x_i) × (z-score for y_i) = (pos. num.) × (neg. num) = -
- Small values of X tend to occur with large values of Y:
 - (z-score for x_i) × (z-score for y_i) = (neg. num.) × (pos. num) = -
- If these dominate \leadsto negative correlation.

Properties of correlation coefficient

- Correlation measures **linear** association.
- Interpretation:
 - Correlation is between -1 and 1
 - Correlation of 0 means no linear association.
 - Positive correlations \rightsquigarrow positive associations.
 - Negative correlations \rightsquigarrow negative associations.
 - Closer to -1 or 1 means stronger association.
- Order doesn't matter: cor(x,y) = cor(y,x)
- Not affected by changes of scale:
 - cor(x,y) = cor(ax+b, cy+d)
 - Celsius vs. Fahreneheit; dollars vs. pesos; cm vs. in.

- Use the cor() function
- Missing values: set the use = "pairwise" \rightsquigarrow available case analysis

cor(leaders\$politybefore, leaders\$polityafter, use = "pairwise")

[1] 0.828

• Very highly correlation!